Master of Advanced Studies in Forensics (MAS Forensics)

Masterarbeit

DNA im Strafverfahren

eingereicht am 15. Mai 2009 von:

dr. jur. Daniel Eberle
Klasse MAS Forensics 2

Masterarbeitsbetreuerin:

Dr. phil. Adelgunde Kratzer
Universität Zürich
Institut für Rechtsmedizin
Leiterin Forensische Genetik
I. INHALTSVERZEICHNIS...III

II. QUELLENANGABEN...VI

III. ABKÜRZUNGSVERZEICHNIS...X

IV. KURZFASSUNG...XII
I. INHALTSVERZEICHNIS

1. Begriff / Definition der DNA .. 1
 1.1. Definition der DNA ... 1
 1.2. Genetische Grundlagen und DNA-Struktur ... 1
 1.3. DNA zu Identifizierungszwecken .. 4

2. Historischer Ueberblick .. 7
 2.1. Entdeckungsgeschichte der DNA im Allgemeinen - die wichtigsten Stationen 7
 2.2. Entwicklung der DNA-Analytik im Strafverfahren im Besonderen 9

3. Grundlagen der DNA-analytischen Auswertungen .. 10
 3.1. Allgemeines .. 10
 3.2. DNA-Methodik ... 10
 3.2.1. DNA-Extraktion .. 10
 3.2.2. Das PCR-Verfahren ... 11
 3.2.3. Bestimmung der DNA-Merkmale durch Elektrophorese 13
 3.3. DNA-Typisierung .. 14
 3.3.1. Autosomale DNA-Marker (DNA-Loci) ... 14
 3.3.2. Geschlechtsbestimmung (Amelogenin) ... 15
 3.3.3. Geschlechtsgebundene DNA-Marker .. 15
 3.3.3.1. Y-Chromosom .. 15
 3.3.3.2. Mitochondriale DNA (mtDNA) ... 16

4. Gesetzliche Grundlagen .. 17
 4.1. Gesetzgebungsverfahren .. 17
 4.2. Geltendes Recht .. 18
 4.2.1. Bundesebene ... 18
 4.2.2. Kantonale Ebene (Kanton Zürich) ... 18
 4.3. Schweizerische Strafprozessordnung (EStPO) .. 19
 4.4. Internationale DNA-Abgleiche ... 19
 4.4.1. Im Allgemeinen .. 19
 4.4.2. Praxis im Kanton Zürich .. 20
 4.4.3. Entwicklung in Europa ... 21
5. Der Verarbeitungsprozess bei der DNA-Analyse in der Schweiz

5.1. Ueberblick / Graphik

5.2. DNA-Probennahme und Spurensicherung

5.2.1. Spurenträger / Biologisches Spurenmateriel

5.2.1.1. Geeignete Zellmaterialien

5.2.1.1.1. Blutspuren

5.2.1.1.2. Speichelspuren

5.2.1.1.3. Vaginalzell- und Spermaspuren

5.2.1.1.4. Hautepithelzellspuren (Kontaktspuren)

5.2.1.1.5. Haare

5.2.1.2. „Schwierige“ Zellmaterialien

5.2.1.3. Grundsätze der Spurensicherung und Umgang mit Asservaten

5.2.1.3.1. Spurensicherung

5.2.1.3.2. Umgang mit Asservaten

5.3. DNA-Analyselabor / Voraussetzungen und Dienstleistungen

5.4. Koordinationsstelle der DNA-Datenbank (IRM Zürich) / CODIS

5.5. AFIS DNA-Services / IPAS

6.1. Grundrechte

6.1.1. Allgemeines

6.1.2. Tangierte Schutzbereiche (BGE 128 II 259)

6.1.2.1. Entnahme eines WSA

6.1.2.2. Erstellung und Bearbeitung eines DNA-Profil

6.1.2.3. Aufbewahrung des WSA und Speicherung des DNA-Profil

6.2. Datenschutz

7. Beweiswert von DNA-Spuren

7.1. „Einfache“ Spuren

7.2. Mischspuren

7.3. Richterliche Ueberzeugung aufgrund freier Beweiswürdigung als Urteilsgrundlage

7.4. Biostatistische Berechnungen

7.4.1. Biostatistische Berechnungen

7.4.2. Einfluss der ethnischen Abstammung eines Spurenlegers

7.4.3. Der Trugschluss des Staatsanwaltes
7.4.4. Der Trugschluss des Verteidigers ... 40
7.4.5. Ein Beispiel zur Verdeutlichung .. 41
7.4.6. Likelihood Ratio (LH) bzw. Likelihood Quotient (LQ) 42

8. Schlussbemerkung ... 45

Erklärung des Verfassers .. 46
II. QUELLENANGABEN

1. Literaturverzeichnis

BERNS Eva, Statistische Probleme der forensischen DNA-Analyse, Diplomarbeit Ruhr Universität Bochum, Fakultät für Sozialwissenschaften, Bochum, 2006 (zit. Berns, Statistische Probleme der forensischen DNA-Analyse)

GOLDSCHMID Peter/MAURER Thomas/SOLLBERGER Jürg (Hrsg.), Kommentierte Textausgabe zur Schweizerischen Strafprozessordnung, Stämpfli Verlag, Bern, 2008 (zit. Goldschmid/Maurer/Sollberger [Hrsg.], Kommentierte Textausgabe zur Schweizerischen Strafprozessordnung)

KELLER Christoph, Der genetische Fingerabdruck - Die DNA-Analyse in der polizeilichen Praxis, 3. Auflage, Richard Boorberg Verlag, Stuttgart u.w., 2006 (zit. Keller, Der genetische Fingerabdruck)

MADEA Burkhard (Hrsg.), Praxis Rechtsmedizin, Befunderhebung, Rekonstruktion, Begutachtung, 2. Auflage, Springer Verlag, 2007 (zit. Madea, Praxis Rechtsmedizin)

SCHULZ Iris/ROLF Burkhard, Der verdeckte Beweis - DNA in forensischen Analysen, publiziert auf: http://www.muenchnerwissenschaftstage.de/mwt2006/content/e160/e707/e728/e954/filetitle/Rechtsmedizin_LMU_ger.pdf (zit. Schulz/Rolf, Der verdeckte Beweis - DNA in forensischen Analysen [zuletzt besucht 20. April 2009])

WIEGAND Peter/ROLF Burkhard, Analyse biologischer Spuren, Teil I (Funktionelle Blutspurenmorphologie, Körpersekrete, Haare; Detektions- und Nachweismethode), in Rechtsmedizin 2/2003 (zit. Wiegand/Rolf, Analyse biologischer Spuren, Teil I)

WIEGAND Peter/ROLF Burkhard, Analyse biologischer Spuren, Teil II (DNA-Typisierung), in Rechtsmedizin 6/2003 (zit. Wiegand/Rolf, Analyse biologischer Spuren, Teil II)

WIEGAND Peter/ROLF Burkhard, Analyse biologischer Spuren, Teil III (Mitochondriale DNA und Y-chromosomale STR), in Rechtsmedizin 6/2004 (zit. Wiegand/Rolf, Analyse biologischer Spuren, Teil III)
WRBA Fritz/DOLZNIG Helmut/MANNHALTER Christine, Genetik verstehen, Grundlagen der molekularen Biologie, Facultas UTB, 2006 (zit. Wrba/Dolznig/Mannhalter, Genetik verstehen)

2. Materialien

♦ Errichtung einer gesamtschweizerischen DNA-Profil-Datenbank; Schlussbericht der Expertenkommission, Bern, 18. Dezember 1998

♦ Botschaft zum Bundesgesetz über die Verwendung von DNA-Profilen im Strafverfahren und zur Identifizierung von unbekannten und vermissten Personen, vom 8. November 2000

3. Internetseiten

♦ Allgemeine Empfehlungen der Spurenkommission zur Bewertung von DNA-Mischspuren, publiziert auf: http://www.rechtsmedizin.klinikum.uni-muenster.de/spurenkommission/Mischspuren-Biostatistik.PDF (zuletzt besucht 20. April 2009)

♦ DNA-Profilanalyse - der Hintergrund, publiziert auf: http://www.ipn.uni-kiel.de/eibe/UNIT02DE.PDF (zuletzt besucht 20. April 2009)

♦ Einstieg in die Biotechnologie, publiziert auf: http://www.biolab-bw.de/Themen.7.0.html (zuletzt besucht 20. April 2009)

♦ Meiers Lexikon online, publiziert auf: http://www.lexikon.meyers.de/medien/Karyogramm+%28Grafiken%29 (zuletzt besucht 20. März 2009)

♦ Short Tandem Repeat DNA Internet DataBase, publiziert auf: http://www.cstl.nist.gov/div831/strbase/fbicore.htm (zuletzt besucht 20. April 2009)

III. ABKÜRZUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA-SCID</td>
<td>Adenosine-Deaminase Severe Combined Immunodeficiency</td>
</tr>
<tr>
<td>AFIS</td>
<td>Automatisiertes Fingerabdruck Identifikationssystem</td>
</tr>
<tr>
<td>Art.</td>
<td>Artikel</td>
</tr>
<tr>
<td>BAP</td>
<td>Bundesamt für Polizei (fedpol)</td>
</tr>
<tr>
<td>BG</td>
<td>Bundesgesetz</td>
</tr>
<tr>
<td>BGE</td>
<td>Bundesgerichtsentscheid</td>
</tr>
<tr>
<td>bp</td>
<td>Basepair (Basenpaare)</td>
</tr>
<tr>
<td>BPI</td>
<td>BG über die polizeilichen Informationssysteme des Bundes</td>
</tr>
<tr>
<td>BV</td>
<td>Bundesverfassung</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>Chr.</td>
<td>Chromosom</td>
</tr>
<tr>
<td>CODIS</td>
<td>Combined DNA Index System</td>
</tr>
<tr>
<td>d. h.</td>
<td>das heisst</td>
</tr>
<tr>
<td>DNA</td>
<td>desoxyribonucleic acid (Desoxyribonukleinsäure)</td>
</tr>
<tr>
<td>EDNA-V</td>
<td>Verordnung des Bundesrates über das DNA-Profil-Informationssystem</td>
</tr>
<tr>
<td>EJPD</td>
<td>Eidgenössisches Justiz- und Polizeidepartement</td>
</tr>
<tr>
<td>ESiPO</td>
<td>Schweizerische Strafprozessordnung</td>
</tr>
<tr>
<td>etc.</td>
<td>et cetera</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>FATS</td>
<td>Forensisches Asservate Tracking System</td>
</tr>
<tr>
<td>FBI</td>
<td>Federal Bureau of Investigation</td>
</tr>
<tr>
<td>f./ff.</td>
<td>und folgende Seite/Seiten</td>
</tr>
<tr>
<td>GWK</td>
<td>Grenzwachtkorps</td>
</tr>
<tr>
<td>IPAS</td>
<td>Informatisiertes Personennachweis-, Aktenachweis- und Verwaltungssystem</td>
</tr>
<tr>
<td>IRM</td>
<td>Institut für Rechtsmedizin</td>
</tr>
<tr>
<td>ISSOL</td>
<td>Interpol Standard Set of Loci</td>
</tr>
<tr>
<td>KKJPD</td>
<td>Konferenz der kantonalen Justiz- und Polizeidirektoren</td>
</tr>
<tr>
<td>KTA</td>
<td>Kriminaltechnische Abteilung</td>
</tr>
<tr>
<td>LR</td>
<td>Likelihood Ratio</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>LQ</td>
<td>Likelihood Quotient</td>
</tr>
<tr>
<td>mtDNA</td>
<td>mitochondriale DNA</td>
</tr>
<tr>
<td>N.</td>
<td>Note</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NZB</td>
<td>Nationales Zentralbüro</td>
</tr>
<tr>
<td>p</td>
<td>Wahrscheinlichkeit</td>
</tr>
<tr>
<td>pg</td>
<td>Pikogramm</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PCN</td>
<td>Process Control Number</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>S.</td>
<td>Seite</td>
</tr>
<tr>
<td>SAS</td>
<td>Schweizerische Akkreditierungsstelle</td>
</tr>
<tr>
<td>SGRM</td>
<td>Schweizerische Gesellschaft für Rechtsmedizin</td>
</tr>
<tr>
<td>SIS</td>
<td>Schengener Informationssystem</td>
</tr>
<tr>
<td>sog.</td>
<td>sogenannt</td>
</tr>
<tr>
<td>StGB</td>
<td>Schweizerisches Strafgesetzbuch</td>
</tr>
<tr>
<td>STR</td>
<td>Short Tandem Repeats</td>
</tr>
<tr>
<td>u. a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>usw.</td>
<td>und so weiter</td>
</tr>
<tr>
<td>u. U.</td>
<td>unter Umständen</td>
</tr>
<tr>
<td>v. a.</td>
<td>vor allem</td>
</tr>
<tr>
<td>VNTR</td>
<td>Variable Number of Tandem Repeats</td>
</tr>
<tr>
<td>WD</td>
<td>Wissenschaftlicher Dienst</td>
</tr>
<tr>
<td>WSA</td>
<td>Wangenschleimhautabstrich</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z. T.</td>
<td>zum Teil</td>
</tr>
</tbody>
</table>
IV. KURZFASSUNG / SUMMARISCHE UMSCHREIBUNG DES THEMAS UND DES ZIELES DER ARBEIT

Die DNA-Analyse hat sich in den letzten Jahren zu einem wichtigen Instrument im Dienst der Strafverfolgung entwickelt. Das DNA-Profil stellt im Rahmen der biologischen Spurenachtsicherung und -auswertung eine zusätzliche Möglichkeit zur Täteridentifizierung dar oder kann einen entscheidenden Beitrag dazu leisten, eine vermutete Täterschaft auszuschliessen.

Bedeutung hat die DNA-Analyse im Strafverfahren hauptsächlich in drei Bereichen:

♦ Bei schwersten Straftaten gegen Leib, Leben, körperliche Integrität, bei denen Täter und Opfer im eigentlichen Sinn gewaltsam aufeinandertreffen und sich gegenseitig und das Umfeld mit Spuren versehen.
♦ Bei Straftaten gegen das Eigentum, bei denen die Täter Spuren hinterlassen, sei es durch die Gewaltanwendung an Sachen oder durch Unachtsamkeit.
♦ Bei der wiederholten Begehung der oben erwähnten Straftaten durch den gleichen Täter (Serien- bzw. Wiederholungstäter) oder durch die gleiche Tätergruppe (z.B. Einbrecherbanden).

Selbstverständlich hat die DNA-Analyse mittlerweile aber in anderen strafrechtlich relevanten Bereichen erhebliche Bedeutung erlangt, angefangen von der Betäubungsmittel- bis hin Straßenverkehrsdelinquenz. Ueberall dort, wo anhand sichergestellter biologischer Spuren auf eine mutmassliche Täterschaft geschlossen werden soll, ist die DNA-Analyse zum unverzichtbaren Mittel im Alltag der Strafverfolgungsbehörden geworden.

Die vorliegende Arbeit soll dem juristisch tätigen Strafverfolger einen Ueberblick verschaffen über die Grundlagen der DNA-Analytik, aber auch über die Möglichkeiten und Gefahren von DNA-Analysen in der Strafuntersuchung, vom Zeitpunkt der Spurenhabnahme bis zur gerichtlichen Verwertbarkeit. Dabei steht aber weniger eine Kommentierung der geltenden gesetzlichen Grundlagen im Vordergrund. Vielmehr sollen dem Juristen auch die naturwissenschaftlichen Aspekte der DNA-Problematik etwas näher gebracht werden, um so einer ganzheitlichen Optik Vorschub zu leisten.
1. Begriff / Definition DNA

1.1. Definition der DNA
Die Abkürzung DNA steht für den englischen Fachausdruck desoxyribonucleic acid (zu Deutsch: Desoxyribonucleinsäure [DNS]). Die DNA ist eine biochemisch definierte Substanz, welche als Speicher der Erbinformationen dient und bei höheren Lebewesen in den Kernen der Körperzellen vorkommt, und zwar in den als Chromosomen bezeichneten „Verpackungseinheiten“¹.

1.2. Genetische Grundlagen und DNA-Struktur²

² Wrba/Dolznig/Mannhalter, Genetik verstehen, S. 23 ff.
Abbildung 14: Chromosom

4 Abbildung 1 aus Berns, Statistische Probleme der forensischen DNA-Analyse, S. 28
5 Brodersen/Anslinger/Rolf, DNA-Analyse und Strafverfahren, S. 92
Abbildung 2⁶: Karyogramm des Menschen: menschlicher Chromosomensatz (links männlich, rechts weiblich) nach der Nomenklatur von Denver; autosomale Gruppen A bis G mit den Chromosomen 1 bis 22 (z. B. A 1-3, B 4-5, C 6-12) sowie die Geschlechtschromosomen X und Y

Jedes der 46 Chromosomen besteht aus einem langen, dünnen Faden, der eine Reihe von Genen enthält. Die chemische Substanz dieses Fadens heisst Desoxyribonukleinsäure oder kurz DNS.

Abbildung 3⁷: Verpackung der DNA

⁶ Abbildung 2 aus Meiers Lexikon online, publiziert auf http://www.lexikon.meyers.de/medien/Karyogramm+%28Grafiken%29

⁷ Abbildung 3 aus Berns, Statistische Probleme der forensischen DNA-Analyse, S. 28

Abbildung 4⁸: Doppelhelix-Struktur der DNA

Die DNA der Chromosomen jeder Zelle setzt sich aus etwa 3.2 Milliarden Bausteinen (Basenpaaren) zusammen - wobei nur ca. 3 Millionen Bausteine, d.h. ca. 0.1 %, von Mensch zu Mensch unterschiedlich sind - und erreicht in gestreckter Form und aneinandergereiht eine Länge von ca. 1.5 Metern (!)⁹.

1.3. DNA zu Identifizierungszwecken

⁸ Abbildung 4 aus http://www.schaep.pdf/dna/in.html

⁹ Brodersen/Anslinger/Rolf, DNA-Analyse und Strafverfahren, S. 95
ATGAAGTTTCAGCGTCCATGG etc. Die genaue Anzahl Gene, die ein Mensch besitzt, ist heute noch nicht bekannt. Fachleute schätzen, dass es zwischen 25'000 und 40'000 Gene sind. Wenn Gene Veränderungen (Mutationen in der Abfolge der chemischen Bausteine) erfahren, die dazu führen, dass die von ihnen gebildeten Eiweiss ihre Funktion nicht mehr erfüllen, entstehen Erkrankheiten.

Zu den Mikrosatelliten gehören die sog. Short Tandem Repeats (STR’s), STR’s sind sehr kurze repetitive Sequenzen, die in der Regel aus vier Basen (z.B. ATTC) bestehen. Für die Identifizierung von Individuen werden heute fast ausschliesslich solche STR’s analysiert.

Im menschlichen Erbgut sind bis heute mehr als 5‘000 solcher STR-Loci bekannt. Von diesen ca. 5‘000 bekannten Loci fanden ca. 50 bis 100 Eingang in die naturwissenschaftliche Kriminalistik, aus denen wiederum sich in Europa in den letzten Jahren ca. 20 Loci etabliert haben.

10 Zollinger (Hrsg.), Skriptum Rechtsmedizin, S. 59 ff.
11 Clevert, DNA-Typisierung, S. 3 f.
Abbildung 5a: Heterozygotie

Abbildung 5b: Homozygotie

Abbildung 5c: Vererbung der DNA-Merkmale von den Eltern auf ein Kind

Abbildung 5a - c: Schematische Darstellung des DNA-Fragmentlängenpolymorphismus

Mittels molekularbiologischer Analyseverfahren können die väterlichen und die mütterlichen Merkmale exakt bestimmt werden. Hinsichtlich des in der Abbildung 5a dargestellten Locus (mit der Wiederholungseinheit ATTC) ergäbe dies z.B. die Zahlenkombination 3-6. Würde nur ein einziger Locus untersucht, so wäre die Unterscheidungsmöglichkeit gering. Aus populationsgenetischen Untersuchungen ist die Verteilung der Allele in der Bevölkerung bekannt. Die Zahlenkombination 3-6 auf dem dargestellten Locus könnten z.B. 10 % der Bevölkerung aufweisen.

An einem zweiten Locus der untersucht wird, z.B. jenem mit der Basenfolge ATGC (dargestellt in Abbildung 5b), besitzt die nämliche, obige Person die Zahlenkombination 3-3, d.h.

12 vgl. Ziff. 3. ff. hernach

13 vgl. Ziff. 7.4.1. hernach
drei Blöcke des DNA-Merkmals ATGC auf dem väterlichen, und drei Blöcke des DNA-Merkmals ATGC auf dem mütterlichen DNA-Molekül. Der Typ 3-3 kann für sich z.B. in 5 % der Bevölkerung vorkommen. Jeder einzelne Locus besitzt für sich also nur eine beschränkte Aussagekraft.

Eine Person, die jedoch am ersten DNA-Locus den Typ 3-6 und gleichzeitig am zweiten DNA-Locus den Typ 3-3 besitzt, ist bereits viel seltener anzutreffen, nämlich 0.1 (10 %) x 0.05 (5 %) = 0.005 = 0.5 %. D.h. nur eine von 200 Personen weist die Zahlenkombination 3-6 und 3-3 auf. Untersucht man nun einen dritten, vierten, fünften, usw. DNA-Locus, so multiplizieren sich die auf jedes Merkmal bezogenen Einzelfrequenzen. Da zusätzlich auch das Geschlecht bestimmt wird, ergibt sich eine Buchstaben-Zahlenkombination, welche - mit Ausnahme eineigiger Zwillinge - individualspezifisch ist und als DNA-Profil bezeichnet wird. Ueblicherweise werden ca. 10 bis 11 verschiedene STR-Systeme untersucht, um ein DNA-Profil zu erstellen.

2. Historischer Ueberblick

2.1. Entdeckungsgeschichte der DNA im Allgemeinen - die wichtigsten Stationen

1886 Friedrich Miescher isoliert erstmals die chemische Substanz DNA aus weissen Blutkörperchen und beschreibt ihre Eigenschaften.

1944 Oswald Avery, Colin McLeod und Maclyn McCarthy entdecken, dass DNA für die Übertragung vererbbarer Eigenschaften verantwortlich ist. Die Erbsubstanz DNA erlangt hierdurch erstmals wissenschaftliches Interesse, der Grundstein für die Gentechnik ist gelegt.

1953 James Watson und Francis Crick stellen in dem renommierten Wissenschaftsjournal „nature“ ihre Ergebnisse aus der Erforschung der DNA-Struktur vor. DNA hat den Aufbau einer Doppelwendel (Doppelhelix) aus zwei umeinander gewundenen Einzelsträngen, die aus Phosphat, Zucker (Desoxyribose) und den vier Basen Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) bestehen. Das Rückgrat der DNA wird durch das Zucker-Phosphat-Gerüst.
gebildet. An der Zuckereinheit setzt jeweils eine Base an, wobei sich immer nur die Basen A und T bzw. G und C in der Doppelhelix gegenüberstehen und durch chemische Kräfte (Wasserstoffbrückenbindungen) aneinander binden.

1956 Francis Crick postuliert aufbauend auf den vorangegangenen, wissenschaftlichen Erkenntnissen, dass Gene als informationstragende Abschnitte auf der DNA erst in die Zwischenstufe der RNA (Englisch: ribonucleic acid) bzw. RNS (Ribonukleinsäure) und ausgehend von dieser in Eiweißstoffe (Proteine) übersetzt werden. Dieses Schema ist als zentrales Dogma der Molekularbiologie bekannt.

1982 Menschliches Insulin erhält als erstes gentechnisch hergestelltes Medikament die Marktzulassung.

2.2. Entwicklung der DNA-Analytik im Strafverfahren im Besonderen

\(^{19}\) vgl. Ziff. 1.3. hiervor

\(^{20}\) vgl. auch Buselmaier/Tariverdian, Humangenetik, S. 39 f.

\(^{21}\) vgl. Ziff. 3.2.2. hernach

\(^{22}\) Benecke, Genetischer Fingerabdruck, S. 1 ff.

Während dieser gesamten Entwicklungszeit hat sich die DNA-Analyse in der Rechtsmedizin nicht nur bewährt und etabliert, sondern es wurden enorme Fortschritte in allen ihren Bereichen erzielt. Diese Entwicklung steht nicht still, sondern schreitet weiterhin rasant voran. Sie regt gerade heutzutage Diskussionen in verschiedenen Bereichen an, zum Beispiel in Fragen der Ethik und der Gesetzgebung.

3. Grundlagen der DNA-analytischen Auswertungen

3.1. Allgemeines

Die DNA-Analyse besteht generell aus drei Schritten: Bei der DNA-Extraktion wird die im Zellkern enthaltene DNA zugängig gemacht. Im zweiten Schritt werden die interessierenden STR’s milliardenfach durch die Polymerasekettenreaktion (PCR) kopiert. Im letzten Schritt werden die PCR-Produkte durch die Gelelektrophorese ihrer Länge nach aufgetrennt. Jeder Schritt bei der Untersuchung von DNA-Spuren ist mit spezifischen Schwierigkeiten und Risiken verbunden, von der Isolierung von DNA über die Typisierung mit STR-Markern in der PCR bis zur Aufbereitung und Visualisierung des PCR-Produktes nach der Elektrophorese. Um dieser Sensibilität Rechnung zu tragen, sind bei allen Arbeitsschritten grösste Sorgfalt und Umsicht notwendig.

3.2. DNA-Methodik

3.2.1. DNA-Extraktion

23 Krause, Eine weltweite Datenbank für Allelfrequenzen autosomaler STR-Systeme, S. 9 f.

24 vgl. Schulz/Rolf, Der verdeckte Beweis - DNA in forensischen Analysen, publiziert auf http://www.muenchnerwissenschaftstage.de/mwt2006/content/e160/e707/e728/e954/filetitle/Rechtsmedizin_LMU_ger.pdf

25 Krause, Eine weltweite Datenbank für Allelfrequenzen autosomaler STR-Systeme, S. 12
Das Methodenspektrum, welches Forschern in der Biotechnologie heute zur Verfügung steht, ist nahezu unüberschaubar geworden.

3.2.2. Das PCR-Verfahren

Um den Vorgang etwas anschaulicher darstellen zu können, sollen die einzelnen Schritte anhand der folgenden Abbildungen gezeigt werden. Abbildung 6a zeigt in schematischer Form eine DNA-Doppelhelix, also die Ausgangssituation der PCR:

Abbildung 6a

Die Abbildung 6b stellt farblich abgesetzt die flankierenden Abschnitte der Zielsequenz auf den Einzelsträngen der DNA-Doppelhelix dar die den Primern als Anlagerungsstelle dienen.

26 vgl. Einstieg in die Biotechnologie, publiziert auf http://www.biolab-bw.de/Themen.7.0.html
Der PCR-Zyklus beginnt mit dem „Melting“. In diesem Schritt wird die DNA-Doppelhelix durch die hohe Temperatur von 94°C in zwei Einzelstränge geteilt. Die Wasserstoffbrückenbindungen, die in der Doppelhelix zwischen den einzelnen DNA-Strängen bestehen, werden durch das Einwirken der Hitze aufgelöst. Die Temperatur wird für längere Zeit aufrecht erhalten, um sicherzustellen, dass sich sowohl die DNA selbst als auch die Primer vollständig von einander gelöst haben und nunmehr als Einzelstränge vorliegen. Diese Ausgangssituation wird zur Vorbereitung des zweiten Schritts benötigt, in dem sich die Primer an den Einzelsträngen der DNA anlagern sollen. Die Abbildung 6c zeigt auf beiden schematisch angedeuteten einzelnen DNA-Strängen farblich abgesetzte Bereiche, die die spezifische Anlagerungsstelle für die Primer darstellen.

Im dritten Schritt, der „Elongation“, erfolgt nun die eigentliche Vervielfältigung der interessierenden DNA-Abschnitte. Die Temperatur wird in Abhängigkeit von der eingesetzten Polymerase wieder erhöht und liegt nun zwischen 68°C und 72°C. Die für die Synthese des neuen DNA-Strangs benötigten Bausteine, die Nucleotide, befinden sich bereits in dem Ansatz. Durch die Polymerase werden nun die fehlenden Stränge mit den Nucleotiden aufgefüllt. Mit dem Auffüllen beginnt die Polymerase am angelagerten Primer und folgt dann dem
DNA-Strang entlang. Die Abbildung 6e zeigt das Ergebnis dieses Schritts in farblich abgesetzter Form.

Abbildung 6e

3.2.3. Bestimmung der DNA-Merkmale durch Elektrophorese

Es sei angemerkt, dass es auch andere Verfahren zur Auftrennung der Fragmente gibt, z.B. die Gelelektrophorese. Aber auch dabei sind die unterschiedlichen Längen der DNA-Fragmente und die damit verbundene Wandergeschwindigkeit das zentrale Analyse-Moment zur Identifikation der jeweiligen Allele.

28 Abbildungen 6a - e aus Berns, Statistische Probleme der forensischen DNA-Analyse, S. 33 ff.

29 Brodersen/Anslinger/Rolf, DNA-Analyse und Strafverfahren, S. 102 ff.
3.3. DNA-Typisierung

3.3.1. Autosomale DNA-Marker (DNA-Loci)

Das FBI hat die in der Abbildung 6 aufgezeigten 13 Kern Loci in die nationale DNA-Datenbank CODIS (Combined DNA Index System) aufgenommen.

Abbildung 6

Diese Loci sind sowohl national als auch international anerkannt als Standard für die menschliche Identifikation. In der Schweiz werden für die Erstellung eines DNA-Profils die 10 DNA-Loci D3S1358, VWA, D16S539, D2S1338, D8S1179, D21S11, D18S51, D19S433, TH01, FGA (FIBRA) und Amelogenin für die Geschlechtsbestimmung (die Hervorhebungen beziehen sich auf die Core Loci des FBI) untersucht. Diese Loci sind internatio-

30 Zeller, Molekularbiologische Geschlechts- und Verwandtschaftsbestimmung in historischen Skelettresten, S. 8 f.

31 Abbildung 7 aus Short Tandem Repeat DNA Internet DataBase, publiziert auf http://www.cstl.nist.gov/div831/strbase/fbicore.htm
nal vergleichbar, da sie auch in den meisten anderen europäischen Ländern in den Datenbanken erfasst werden.

Bei einem DNA-Profil, welches mit den erwähnten 10 DNA-Loci erstellt wurde, ist die Wahrscheinlichkeit, dass ein anderes Individuum ein gleiches Profil aufweist weniger als eins zu 10 Milliarden. Auch wenn nur ein Teil dieser 10 Loci typisiert werden kann, wie z.B. bei partiell zerstörten Spuren, kann diese Anzahl typisierter Loci trotzdem ausreichen, um die Spur mit einem genügend hohen Beweiswert einer mutmasslichen Täterschaft zuzuordnen.

3.3.2. Geschlechtsbestimmung (Amelogenin)

Die Geschlechtsbestimmung ist ein wichtiges Werkzeug der forensischen Spurenanalytik. Besonders bei Sexualdelikten oder ganz allgemein bei Fällen mit weiblichem Opfer und männlichem Täter ist man auf der Suche nach der „männlichen Fremdspur“, die den Täter überführen soll.

3.3.3. Geschlechtsgebundene DNA-Marker

3.3.3.1. Y-Chromosom

32 Brodersen/Anslinger/Rolf, DNA-Analyse und Strafverfahren, S. 113 f.
33 Wiegand/Rolf, Analyse biologischer Spuren, Teil III, S. 473 ff.
34 vgl. Ziff. 3.3.3.2. hernach

3.3.3.2. Mitochondriale DNA (mtDNA)35

Neben der im Zellkern vorhandenen DNA, aus der das „klassische“ DNA-Profil erstellt wird, gibt es in der Zelle eine zweite Art von DNA, die sog. mitochondriale DNA. Diese befindet sich im Zellleib jeder Zelle des menschlichen Körpers in Form kleiner Organellen, den sog. Mitochondrien ("Kraftwerke der Zelle") und dies in sehr grosser Anzahl, d.h. zwischen 50'000 bis 100'000 Kopien pro Zelle. Während von der Kern-DNA nur zwei Kopien (eine väterliche und eine mütterliche) vorhanden sind, liegen in der Zelle hunderte von Mitochondrien vor, von denen jede etwa 10 DNA-Kopien enthält. Die mitochondriale DNA stammt ausschliesslich von der Mutter. Spezialfälle der forensischen Spurenkunde erfordern die Analyse der mitochondrialen DNA. Diese Art der Analysemethode wurde zum Beispiel bei der Identifikation der Zarenfamilie eingesetzt. Im Wesentlichen bestehen vier Einsatzgebiete:

- Analyse von stark zerstörten oder sehr alten Spuren, bei denen die Kern-DNA zerstört ist;
- Analyse von sehr kleinen Spuren, bei denen zu wenig Kern-DNA vorhanden ist;
- Analyse von Haarschäften (Haare ohne Haarwurzel; Haarschäfte enthalten keine Kern-DNA);
- Bestimmung der Verwandtschaft zwischen Personen, da die mtDNA ausschliesslich von der Mutter stammt und deshalb in mütterlicher Linie vererbt wird. Alle Personen der müt-

35 Wiegand/Rolf, Analyse biologischer Spuren, Teil III, S. 473 ff.
terlichen Linie weisen diese mtDNA auf, so dass z.B. die Mütter oder Grossmütter vergleichend untersucht werden können, nicht aber die Väter.

Bei der Analyse der mtDNA wird nicht die DNA-Fragmentlänge bestimmt, sondern es wird ein kleiner Teil der mtDNA sequenziert, d.h. es wird an einem kleinen Teil des mitochondrialen DNA-Fadens die exakte Abfolge der vier Basen bestimmt.

Gespeichertes mtDNA-Profil:

(...) A T C C T C A A C (...)

(Ergebnis der mitochondrialen DNA-Analyse)

Das Analyseresultat ist in diesem Fall keine Zahlen-Kombination, sondern die genaue Abfolge der vier Basen. Werden zwei mitochondrialen DNA-Profile miteinander verglichen, so ergibt sich entweder eine

Nicht-Ubereinstimmung der Basenabfolge (Sequenz) = Ausschluss

oder eine

Exakte Ubereinstimmung der Basenabfolge (Sequenz) = Einschluss.

In einer mitochondrialen DNA-Profil-Datenbank werden wiederum sämtliche gespeicherten mitochondrialen DNA-Profile miteinander verglichen und die exakte Uebereinstimmung zwi-
schen zwei mtDNA- Profiles als "Hit" angezeigt.

Die aus der Analyse der mitochondrialen DNA erhaltene DNA-Sequenz ist **nicht individual-
spezifisch**, d.h. es existieren mehrere Personen mit der gleichen Sequenz. Ihr Wert für die Identifikation von Personen ist somit geringer anzusetzen als die Analyse der Kern-DNA. Trotzdem ist die Analyse der mtDNA für jene Fälle wertvoll, bei denen eine Analyse der Kern-DNA nicht möglich ist. Bei der statistischen Auswertung von mtDNA-Befunden wird die Häufigkeit der beobachteten Variante in der relevanten Bevölkerungsstichprobe angegeben. Da mtDNA haploid ist, d.h. pro Zelle nur ein mtDNA-Typ vorliegt und die Vererbung somit ohne Rekombination erfolgt, wird die Häufigkeit nicht wie bei den STR-Loci durch Multiplikation der Häufigkeiten der einzelnen Varianten ermittelt. Die Häufigkeit der beobachten Sequenzvariante (des sog. Haplotyps) wird in einer Referenzdatenbank ermittelt. In der Folge ist die statistische Aussagekraft bei mtDNA-Untersuchungen geringer als bei STR-Untersuchungen der Kern-DNA.

4. Gesetzliche Grundlagen

4.1. Gesetzgebungsverfahren

Mit ihrem Schreiben vom 6. Dezember 1996 an die Konferenz der kantonalen Justiz- und Polizeidirektoren (KKJPD) ersuchte die Konferenz der Strafverfolgungsbehörden der französischsprachigen Schweiz und des Tessins die KKJPD, möglichst umgehend die Frage nach der Errichtung einer DNA-Profil-Datenbank zu prüfen.

4.2. Geltendes Recht

4.2.1. Bundesebene

4.2.2. Kantonale Ebene (Kanton Zürich)

4.3. Schweizerische Strafprozessordnung (ESiPO)

In die voraussichtlich am 1. Januar 2011 in Kraft tretende Schweizerische Strafprozessordnung (ESiPO) werden diejenigen Bestimmungen des DNA-Profil-Gesetzes inhaltlich übernommen, welche die Verwendung von DNA-Profilen zu strafprozessualen Zwecken regeln. Dabei ist zu beachten, dass das DNA-Profil-Gesetz weiterhin Gültigkeit behält; es findet Anwendung auf die Verwendung von DNA-Profilen ausserhalb eines Strafverfahrens sowie auf Strafverfahren, die von der StPO nicht geregelt werden (z.B. Militärstrafverfahren). Im Weitern regelt das DNA-Profil-Gesetz nach wie vor das DNA-Profil-Informationssystem, welches ausschliesslich durch den Bund betrieben wird36.

4.4. Internationale DNA-Abgleiche

4.4.1. Im Allgemeinen

Seit Juni 2003 steht dem Generalsekretariat von Interpol eine DNA-Datenbank für den internationalen Abgleich zuordenbarer und nichtzuordenbarer DNA-Profile (Tatortspuren und Vergleichsproben) zur Verfügung. Dieses DNA-Matchingsystem wurde auf einem autonomen Rechner eingerichtet, enthält keine Nominaldaten, ist mit keinen anderen kriminalpolizeilichen Informationssystemen vernetzt und steht allen 182 Interpol-Mitgliedsländern zum internationalen DNA-Datenabgleich zur Verfügung. Der Rechner ist stark genug, um alle zurzeit weltweit in nationalen Polizei-Datenbanken gespeicherten DNA-Profile (etwa 5.1 Millionen) aufnehmen und verarbeiten zu können. DNA-Anfragen, Abgleiche und Antworten werden manuell durch Mitarbeiter der Interpol-DNA-Einheit durchgeführt. Alle Mitgliedsländer sind eingeladen, DNA-Profile von Tatorten mit unbekannter Täterschaft, vermissten Personen, nicht identifizierten Leichen, aber auch bekannten Personen (Verurteilte, Verdächtige) aus ihren nationalen oder - falls vorhanden - regionalen Datenbanken einzuspeichern und mit den von anderen Mitgliedsländern zur Verfügung gestellten Profilen abzugleichen. Die Interpol-

36 Goldschmid/Maurer/Sollberger (Hrsg.), Kommentierte Textausgabe zur Schweizerischen Strafprozessordnung, S. 240 f.

4.4.2. Praxis im Kanton Zürich

Im Kanton Zürich werden Interpol DNA-Abgleiche nur zwecks Identifikation eines bislang unbekannten Verursachers einer DNA-Tatortspur vorgenommen. Über die Kriminaltechnische Abteilung (KTA) der Kantonspolizei Zürich bzw. den Wissenschaftlichen Dienst (WD) der Stadtpolizei Zürich kann via das NZB Interpol Bern ein Interpol DNA-Abgleich in Auftrag gegeben werden.

4.4.3. Entwicklung in Europa

Das Schengener Übereinkommen ist thematisch wesentlich breiter angelegt, wohingegen der Prüm-Vertrag über weite Strecken ein reines Polizeiabkommen darstellt, welches aber eine wesentlich intensivere Zusammenarbeit vorsieht. Dass die nationalen Datenbanken - insbesondere die DNA-Datenbanken - den anderen Staaten „online“ offenstehen, ist beim Schengener Übereinkommen im Gegensatz zum Prüm-Vertrag nicht vorgesehen. Die Schweiz hat grundsätzlich ein Interesse daran, beim Vertrag von Prüm mitzumachen. Derzeit sind Abklärungen u.a. auch auf politischer Ebene im Gange, ob und in welcher Form sich die Schweiz am Vertrag von Prüm beteiligen sollte oder könnte.
5. Der Verarbeitungsprozess bei der DNA-Analyse in der Schweiz

5.1. Überblick / Graphik

Für die Erstellung eines DNA-Profils wird bei Personen in der Regel ein Wangenschleimhautabstrich (WSA) abgenommen. Für das DNA-Profil von Spuren-Proben werden an tatrelevanten Gegenständen Proben aus verschiedenen Materialien herausgelöst bzw. von diesen abgenommen.

Der Arbeitsablauf bei der DNA-Analyse zum Zweck der Strafverfolgung sieht - gestützt auf die gleichzeitig mit dem DNA-Profil-Gesetz im Januar 2005 eingeführte webbasierte Kommunikationsplattform für die Datenübermittlung (sog. Message-Handler) - wie folgt aus:

♦ Die ermittelnde Polizei- bzw. Justizbehörde übergibt ihr sichergestelltes Spurenmaterial und die bei erkennungsdienstlich behandelten Personen erhobenen WSA, einem vom Bund zugelassenen DNA-Analyselabor zur Erstellung eines DNA-Profils.

Personalien und Fingerabdrücke der Personen werden in einer separaten Datenbank, im informatisierten Personennachweis-, Aktennachweis- und Verwaltungssystem (IPAS; Datenbank für Personen- und Fallinformation, betrieben von den AFIS DNA Services beim Bundesamt für Polizei [BAP, fedpol]), gespeichert.

Zu jeder Spur werden Fallinformationen in den Message Handler eingegeben. Diese können auch von den analysierenden Labors eingesehen werden, damit sie die für die Analyse relevanten Informationen erhalten. Sofern das Spurenprofil in die DNA-Datenbank aufgenommen wird, werden die dazugehörigen Fallinformationen später im IPAS übernommen.

♦ In der Schweiz gibt es sechs forensisch-genetische Labors, welche akkreditiert und durch den Bund zugelassen sind, solche Proben zu analysieren. DNA-Profile, welche die Aufnahmekriterien erfüllen, werden elektronisch an die Koordinationsstelle zum Import in die DNA-Datenbank weitergeleitet. Profile, welche die Aufnahmekriterien nicht erfüllen, gehen mit dem entsprechenden Kommentar zurück zum Auftraggeber. Bei Eignung stehen diese für einen sog. direkten oder lokalen Vergleich mit einem konkreten Tatverdächtigen zur Verfügung.

38 vgl. Ziff. 5.5. hernach
39 vgl. Ziff. 5.3. hernach
und erst danach von der Koordinationsstelle DNA an die AFIS DNA Services weitergeleitet.

- Bei einer Uebereinstimmung mit einem bereits vorhandenen Profil (Treffer bzw. „Hit“) verknüpfen die AFIS DNA Services das anonymisierte bzw. pseudonymisierte Resultat mit den entsprechenden Personen- bzw. Fallangaben (aus IPAS) und übermitteln der ermittelnden Polizei- bzw. Justizbehörde einen entsprechenden Bericht. Der Schlussbericht ist für die ermittelnden Behörden über den Message Handler sofort online zugänglich.

Abbildung 8

5.2. DNA-Probennahme und Spurensicherung

5.2.1. Spureträger / Biologisches Spurenmaterial

Es gilt der Grundsatz, dass praktisch sämtliche Spuren menschlicher Herkunft inzwischen DNA-analytisch auswertbar sind. Dies gilt insbesondere auch dann, wenn die Spuren bereits grösstenteils zerstört sind. Aus biologischen Spuren, die nur noch wenige Zellen enthalten, kann man selbst nach Jahrzehnten noch auswertbare DNA-Profile bestimmen.

40 Abbildung 8 aus Pfefferli/Seiler, Sexualdelikte - Kriminaltechnik

41 Keller, Der genetische Fingerabdruck, S. 22
5.2.1.1. Geeignete Zellmaterialien

5.2.1.1.1. Blutspuren

Grundsätzlich kann es sich bei blut verdächtigen Spuren auch um tierische Blutspuren handeln. Sie lassen sich mit bloßem Auge betrachtet nicht von menschlichen Blutspuren unterscheiden. Die Differenzierung gelingt nur serologisch (durch Einsatz von tierspezifischen Antiseren) oder molekularbiologisch (mittels DNA-Analyse). Für die spurenkundliche Behandlung (Sicherung, Asservierung, Verpackung, etc.) ergeben sich diesbezüglich aber keine Unterschiede.

5.2.1.1.2. Speichelspuren

5.2.1.1.3. Vaginalzell- und Spermaspuren

Nach Vergewaltigungs- bzw. Sexualdelikten werden im Rahmen der körperlichen Untersuchung der Geschädigten u.a. Vaginalabstriche entnommen, in denen dann bei erfolgtem Geschlechtsverkehr eine Mischung aus Vaginalepithelzellen und Spermien nachgewiesen werden kann. Um die Merkmale des Spermaverursachers aus dieser Mischung darzustellen, besteht die Möglichkeit, die zumeist größere Anzahl an Vaginalepithelzellen von der Spermienzellfraktion mittels einer sog. differenziellen Lyse chemisch so zu trennen, dass die

42 Wiegand/Rolf, Analyse biologischer Spuren, Teil II, S. 378
43 Pfefferli (Hrsg.), Die Spur - Ratgeber für die spurenkundliche Praxis, Ziff. 3.4
44 Brodersen/Anslinger/Rolf, DNA-Analyse und Strafverfahren, S. 102

5.2.1.1.4. Hautepithelzellspuren (Kontaktspuren)

5.2.1.1.5. Haare

Haare, die z.B. auf der Kleidung von Täter oder Opfer gefunden werden und mit grosser Wahrscheinlichkeit in tatrelevantem Zusammenhang stehen, lassen sich, falls anagene Wurzeln vorhanden sind, zumeist erfolgreich untersuchen (anagen = die erste Phase des Lebenszyklus eines Haares; sie dauert 3 bis 6 Jahre je nach Alter und Geschlecht; während dieser Phase wächst das Haar 0.2 - 0.5 mm pro Tag). Soweit nur Haarschäfte (Haarschaft = sichtbarer Teil des Haares; wird meist einfach als „Haar“ bezeichnet) vorhanden sind, ist eine Typisierung mit STR-Systemen wenig aussichtsreich. Eine Untersuchung von Haarschaft-DNA

45 Wiegand/Rolf, Analyse biologischer Spuren, Teil II, S. 378
46 Wiegand/Rolf, Analyse biologischer Spuren, Teil II, S. 378
kann dann mittels Mitochondrien-DNA-Typisierung erfolgen\(^{48}\). Können nur telogene Haare in die DNA-Untersuchung eingebracht werden, ist es sinnvoll, DNA-Systeme zu verwenden, die besonders kurze PCR-Produkte generieren, da die DNA in telogenen Haaren oftmals durch Degradation stärker verkürzt ist als in Haaren mit anagenen Wurzeln (telogen = letzte Phase des Lebenszyklus eines Haares; sie dauert 3 - 6 Monate; die keratinerzeugende Phase ist beendet und die Haarzwiebel löst sich vollständig von der Haarpapille; diese Phase dauert an, bis das Haar herausfällt; danach beginnt die Anagen-Phase der neuen Haarzwiebel\(^{49}\)). Menschen- und Tierhaare lassen sich mikroskopisch differenzieren\(^{50}\).

5.2.1.2. „Schwierige“ Zellmaterialien

5.2.1.3. Grundsätze der Spurensicherung und Umgang mit Asservaten
Die Grundsätze der Spurensicherung und der Umgang mit Asservaten - als eigentliche Kernaufgaben weniger der untersuchungsrichterlichen als vielmehr der kriminalpolizeilichen Organe - seien im Folgenden lediglich im Sinne einer Übersicht dargestellt:

5.2.1.3.1. Spurensicherung

\[\text{Grundsatz:}\]

\[\begin{itemize}
 \item Spuren schützen
 \item Keine Spuren vernichten
 \item Keine eigenen Spuren legen
\end{itemize}\]

\[\text{Anweisungen an den Meldeerstatter:}\]

\[\begin{itemize}
 \item Nichts berühren
 \item Nichts verändern
 \item Tatort verlassen
\end{itemize}\]

\(^{48}\) vgl. Ziff. 3.3.3.2. hiervor

\(^{49}\) vgl. Medizinisches Fachlexikon zu Haarausfall, publiziert auf http://www.sprechzimmer.ch/sprechzimmer/Fokus/Haarausfall/Glossar/Telogen.php

\(^{50}\) Pfefferli (Hrsg.), Die Spur - Ratgeber für die spurenkundliche Praxis, Ziff. 3.4

\(^{51}\) Keller, Der genetische Fingerabdruck, S. 49
♦ Drittpersonen vom Tatort fernhalten

Sofortmassnahmen am Tatort:
♦ Gefahrenabwehr (Erste Hilfe, Selbstschutz)
♦ Tatort grossräumig absperren (äussere Absperrung)
♦ Zutrittswege bezeichnen und markieren
♦ Warteraum ausserhalb des Tatortes bestimmen

Spurenschutz:
♦ Spurensperrzone markieren
♦ Vor dem ersten Betreten: Boden nach vorhandenen Spuren absuchen
♦ Erkennbare Spuren markieren

Kontamination vermeiden:
♦ Persönliche Schutzmassnahmen: Unbedingt Schutzkleidung, Mundschutz und Handschuhe tragen und - soweit möglich - Husten, Niesen, Sprechen in Spurennähe vermeiden; Einmalhandschuhe nach jedem Asservat wechseln
♦ Nichts berühren; keine Eigenberührungen mit den Handschuhen vornehmen; Berührungen der Oberfläche der Asservate auch mit Handschuhen - soweit möglich - vermeiden, da die locker anhaftenden Zellen bei jedem Kontakt, z.T. auch auf die Handschuhe übertragen werden können und letztlich infolge Verlust/Kontaminationsgefahr für die DNA-Analyse nicht mehr zur Verfügung stehen

Zutrittsberechtigung Spurensperrzone:
♦ Vor der Spurensicherung: Nur Rettungskräfte zwecks Gefahrenabwehr (Arzt, Sanitäter, Feuerwehr)
♦ Während der Spurensicherung: Spurenspezialisten (Fotografie, Kriminaltechnik, Rechtsmedizin)

Verhaltensregeln:
♦ Persönliche Gegenstände ausserhalb des Tatortes ablegen
♦ Nicht rauchen
Keine Einrichtungen des Tatortes benutzen (Telefon, WC, Abfalleimer)

Lückenlose Beweiskette (chain of custody):
- Jede Veränderung der Tatortsituation schriftlich festhalten
- Alles dokumentieren

5.2.1.3.2. Umgang mit Asservaten
Eng verbunden mit der Gewährleistung einer lückenlosen Beweiskette ist der Umgang mit den Asservaten. Hierbei ist auf Folgendes zu achten:
- Detaillierte Dokumentation der Auffindesituation am Tatort
- Vollständige Asservatenliste erstellen
- Nachvollziehbarkeit des Asservatenweges gewährleisten (z. B. FATS = Forensisches Asservate Tracking System)
- Möglichst ganze Spur sicherstellen
- Verschiedene Spuren nicht mischen, d.h. nicht auf gleiches Wattestäbchen aufnehmen bzw. nicht in das gleiche Behältnis (für Lagerung oder Transport) legen
- Spur wenn immer möglich auf dem Spurenträger belassen und diesen gesamthaft mitnehmen; dabei vor Abfallen bzw. Kontamination durch Verpacken schützen; wenn nicht möglich, dann Spur vom Träger abheben: von glatter, nicht sauger Oberfläche mit angefeuchtetem, steriles Wattestäbchen / von sauger Oberfläche (z. B. Holz) mit sauberem Skalpell tangential abschneiden, sonst mit feuchtem Wattestäbchen stark abreiben / Spur auf Textilstoff wenn möglich ausschneiden
- Keine unnötige Handhabung der Asservate
- DNA ist empfindlich auf Feuchtigkeit und Sonnenlicht (UV-Bestrahlung); daher sichergestellte Spur vollständig trocknen bei Raumtemperatur und in Dunkelheit
- Spezialfall: Nahrungsmittel rasch tiefgefrieren
- Vorproben oder „Vortests“ zur Feststellung der Spurenhaut unbedingt den Spezialisten überlassen (KTD; IRM)
- Entsprechende Checklisten (Merkblätter) beachten

Die Kantonspolizei Zürich verfügt über entsprechende Checklisten sowohl für die DNA-Spuresicherung, das DNA-Asservatenhandling als auch die DNA-Asservatenadministration, in welchen Unterlagen die jeweils vorzunehmenden einzelnen Arbeitsschritte bzw. Vorkehrungen detailliert umschrieben sind. Auf die entsprechenden Checklisten sei an dieser Stelle verwiesen, zumal eine vertiefte Darstellung den Rahmen dieser Arbeit sprengen würde.

52 Keller, Der genetische Fingerabdruck, S. 53 f.
53 vgl. Abbildung 9
5.3. DNA-Analyselabor / Voraussetzungen und Dienstleistungen

- **WSA:** innert höchstens sechs Arbeitstagen;
- **WSA express:** innert höchstens zwei Arbeitstagen oder nach Vereinbarung;
- **einfache Spur:** innert höchstens 12 Arbeitstagen;
- **Spur express:** innert höchstens sechs Arbeitstagen oder nach Vereinbarung;

5.4. Koordinationsstelle der DNA-Datenbank (IRM Zürich) / CODIS

Bei CODIS (Combined DNA Index System) handelt es sich eigentlich um eine vom FBI entwickelte und zur Verfügung gestellte Software, mit welcher die Schweizerische DNA-Datenbank betrieben wird. Inhaberin der DNA-Datenbank ist das Bundesamt für Polizei (BAP, fedpol); betrieben wird die DNA-Datenbank von den AFIS DNA Services des BAP (fedpol) (vgl. Art. 8 DNA-Profil-Verordnung).

Der Koordinationsstelle DNA - aus dem Kreis der anerkannten DNA-Analyselabsor wurde diese Aufgabe dem IRM Zürich übertragen - obliegen die nachgenannten Aufgaben, insbesondere:

♦ die Überprüfung der von den DNA-Analyselabsor erstellten DNA-Profile auf die Erfüllung der Qualitätskriterien;
♦ die Eingabe der neu erstellten DNA-Profile in die DNA-Datenbank und die Prüfung auf Übereinstimmung mit den in der DNA-Datenbank vorhandenen DNA-Profilen (Profilvergleich);

Haas/Voegeli/Kratzer/Bär, Die Schweizerische DNA-Datenbank, S. 563 f.
die Zusammenarbeit mit dem BAP (Bundesamt für Polizei; fedpol) bei internationalen Ersuchen.

Auch die Koordinationsstelle DNA hat für eine vollständige und nachvollziehbare Dokumentation sämtlicher Arbeitsschritte gesorgt zu sein.

Die forensischen DNA-Profile werden zentral in der nationalen DNA-Datenbank CODIS gespeichert und bearbeitet. Die entsprechenden Standards und Rahmenbedingungen sind gesetzlich verankert. Das DNA-Profil ist ausschließlich dem DNA-Analyselabor und der Koordinationsstelle DNA bekannt, welche die Datenbank betreibt. Es werden nur Profile verarbeitet, welche die Anforderungen in rechtlicher und qualitativer Hinsicht erfüllen. Für die Aufnahme von DNA-Profilen von Personen ist die erfolgreiche Typisierung aller 10 erwähnten DNA-Loci Voraussetzung. DNA-Profile von einfachen Spuren (DNA-Profil aus Spur ohne Hinweise für mehrere Spurengänger) werden nur aufgenommen, wenn mindestens sechs der 10 DNA-Loci typisiert werden konnten. DNA-Profile von Mischspuren (DNA-Profil aus Spur mit Hinweisen auf mehr als einen Spurengerät) werden in der Datenbank gespeichert, wenn sie nicht mehr als vier Allele pro Locus aufweisen und mindestens acht der 10 DNA-Loci bestimmt werden konnten. Aufgrund dieser relativ strikten Aufnahmebedingungen soll verhindert werden, dass die Suchläufe falsch positive Übereinstimmungen ergeben.

Jede Datenbank birgt Risiken und Gefahren. Die Kontrollmöglichkeiten des Staates wachsen, denn aufgrund einer DNA-Analyse könnten weit mehr Aussagen über die betreffende Person gemacht werden, als der Inhalt derjenigen Daten (Buchstaben-Zahlen-Kombinationen), die in einer DNA-Profil-Datenbank gespeichert werden.

Bei jeder Datenbank, in der Daten von Menschen eingegeben und bearbeitet werden, die mit anderen Datenbanken verbunden ist und ein Datenaustausch mit anderen Datenbanken erfolgt, besteht zudem die Möglichkeit von Missbräuchen. Denkbar ist hierbei etwa die unrechtmäßige Lösung oder Aenderung der gespeicherten Daten, die unrechtmäßige Eingabe von neuen Daten, die unrechtmäßige Weitergabe an Dritte, sowie das unrechtmäßige Abhören von elektronischen Datenübermittlungen. In Zeiten, in denen das Genom des Menschen nahezu komplett entschlüsselt ist, liegt der Gedanke nahe, dass eine DNA-Analyse nicht mehr allein zur Identitätsfeststellung, sondern darüber hinaus zur Entschlüsselung aller möglichen Erbveranlagungen und Dispositionen von Personen dienen könnte, bzw. dass die aus einer DNA-

55 vgl. Ziff. 7.1, nach
56 vgl. Ziff. 7.2, nach

5.5. AFIS DNA-Services / IPAS

Seitens der auftraggebenden Behörde (ermittelnde Polizei- bzw. Justizbehörde), wird die Prozess-Kontroll-Nummer (PCN) mit den bekannten Personalien oder den Tatortangaben den

57 vgl. Ziff. 7. ff. hernach

AFIS DNA Services mitgeteilt. Die AFIS DNA Services bearbeiten die Prozess-Kontroll-Nummer (PCN), die Personen- oder Spurendaten und die Tatortangaben im Informationssystem IPAS (vgl. Art. 10 Abs. 2 DNA-Profil-Verordnung).

Das Informationssystem IPAS setzt sich – gemäss Art. 1 Abs. 2 der Verordnung über das informatisierte Personen- und Verwaltungssystem im Bundesamt für Polizei (IPAS-Verordnung; SR 361.2), welche Verordnung gestützt auf Art. 19 des BG über die polizeilichen Informationssysteme des Bundes (BPI; SR 361) erlassen wurde - aus den nachfolgend aufgeführten Subsystemen, nämlich

- dem System internationale und interkantonale Polizeikooperation nach Art. 12 BPI,
- dem System zur Personenidentifikation im Rahmen der Strafverfolgung und bei der Suche nach vermissten Personen nach Art. 14 BPI sowie
- dem Geschäfts- und Aktenverwaltungssystem von fedpol nach Art. 18 BPI

6.1. Grundrechte

6.1.1. Allgemeines

6.1.2. Tangierte Schutzbereiche (BGE 128 II 259)

Die einzelnen Gehalte der früher durch ungeschriebenes Verfassungsrecht geschützten „persönlichen Freiheit“ sind in der neuen Bundesverfassung in verschiedenen Verfassungsbestimmungen garantiert. Während Art. 10 Abs. 2 BV die verfassungsrechtliche Grundgarantie zum Schutz der Persönlichkeit darstellt und neben dem Recht auf körperliche und geistige Unversehrtheit sowie der Bewegungsfreiheit weiterhin all jene Freiheiten verbrieft, die elementare Erscheinungen der Persönlichkeitsentfaltung darstellen, schützt Art. 13 Abs. 2 BV den Einzelnen vor Beeinträchtigungen, die durch die staatliche Bearbeitung seiner persönlichen Daten entstehen (Recht auf informelle Selbstbestimmung). Der verfassungsrechtliche Datenschutz ist Teil des Rechts auf eine Privat- und persönliche Geheimsphäre (Art. 13 Abs. 1 BV).

6.1.2.1. Entnahme eines WSA

Das Bundesgericht qualifiziert die Entnahme eines WSA, vergleichbar mit anderen erkennungsdienstlichen Massnahmen wie die Haar- oder die Blutentnahme, als Eingriff in die körperliche Integrität (Art. 10 Abs. 2 BV). Die Schwere dieses Eingriffs beurteile sich nach objektiven Kriterien: Nicht entscheidend sei, wie der Eingriff vom Betroffenen empfunden werde. Demnach handle es sich bei der Entnahme eines WSA mittels eines Wattestäbchens, bei der die Haut nicht verletzt werde, lediglich um einen leichten Eingriff in die körperliche Integrität.

6.1.2.2. Erstellung und Bearbeitung des DNA-Profils

6.1.2.3. Aufbewahrung des WSA und Speicherung des DNA-Profils

Aus dem informationellen Selbstbestimmungsrecht (Art. 13 Abs. 2 BV) folgt gemäss Bundesgericht immerhin, dass der WSA nach erfolgreichem Erstellen des DNA-Profils zu vernichten ist. Es bestehe die Gefahr, dass der WSA für Analysen verwendet werde, die über die Feststellung des DNA-Identifizierungsmusters hinausgingen. Die Speicherung bzw. die Lö-

59 Die Qualifikation als leichter Eingriff hat zur Folge, dass als gesetzliche Grundlage des Eingriffs eine Verordnung genügen würde, da nach Art. 36 Abs. 1 BV nur schwerwiegende Einschränkungen im Gesetz selbst vorgesehen sein müssen.
schung des DNA-Profils aus dem Informationssystem bestimmt sich - sofern das DNA-Profil „rechtmäßig“ erhoben wurde - nach den bundesrechtlichen Bestimmungen des DNA-Profil-Gesetzes.

6.2. Datenschutz

7. Beweiswert von DNA-Spuren

7.1. „Einfache“ Spuren

60 vgl. Botschaft zum Bundesgesetz über die Verwendung von DNA-Profilen im Strafverfahren und zur Identifizierung von unbekannten und vermissten Personen, S. 40

61 Haas/Voegeli/Kratzer/Bär, Die Schweizerische DNA-Datenbank, S. 565
verglichen. Im Idealfall erfolgt eine Zuordnung der Spur zu einer Person. Diese Zuordnung kann biostatistisch bewertet werden. Kann eine Zuordnung der Spur zu einer tatbeteiligten Person nicht erfolgen, können die Merkmale der Spur in der DNA-Datenbank recherchiert und auch gespeichert werden.

7.2. Mischspuren

Eine Spur, die mehr als zwei Allele in einem DNA-System aufweist, kann in der Regel als Mischspur bezeichnet werden, sofern keine genetischen Besonderheiten (z.B. Trisomie, Duplikation) vorliegen. Wenn mehr als zwei Allele in mindestens zwei DNA-Systemen auftreten, ist von einer Mischspur auszugehen. Bei Mischspuren muss - sofern möglich - die Zahl der unterschiedlichen Spurengänger geklärt werden:

- Im Allgemeinen lässt der Nachweis von max. vier Allelen pro DNA-System auf mindestens zwei unterschiedliche Spurengänger schliessen;
- im Allgemeinen lässt der Nachweis von sechs Allelen pro DNA-System auf mindestens drei unterschiedliche Spurengänger schliessen;
- im Allgemeinen ist die Festlegung auf die genaue Anzahl der Spurengerät bei mehr als sechs Allelen pro DNA-System nicht sinnvoll und auch nicht möglich.

Mischungen von mehr als zwei Personen, wie sie oft bei Epithelzellspuren (Kontaktspur) erhalten werden, sind schwieriger zu interpretieren. Da bei den einzelnen Merkmalen nicht sichergestellt werden kann, welches Merkmal von welcher Person stammt, kann eine eindeutige Zuordnung der Allele zu bestimmten Personen nicht immer erfolgen: Der Ausschluss einer Person gestaltet sich dagegen häufig einfacher, da das Fehlen von DNA-Merkmalen einer Person in einer Mischspur in der Regel als Ausschluss betrachtet werden kann.

62 vgl. Ziff. 7.4.1. hernach
63 Herrmann/Saternus (Hrsg.), Biologische Spurenkunde - Kriminalbiologie, S. 276 f.
64 vgl. Allgemeine Empfehlungen der Spurenkommission zur Bewertung von DNA-Mischspuren, publiziert auf http://www.rechtsmedizin.klinikum.uni-muenster.de/spurenkommission/Mischspuren-Biostatistik.PDF
65 vgl. Ziff. 7.4.6. hernach
66 Herrmann/Saternus (Hrsg.), Biologische Spurenkunde - Kriminalbiologie, S. 276 f.
7.3. Richterliche Ueberzeugung aufgrund freier Beweiswürdigung als Urteilsgrundlage

Stimmt ein DNA-Profil aus einer Tatortspur mit dem Profil einer Person überein, muss diesem Ergebnis ein Beweiswert zugeordnet werden. Dabei wird die Möglichkeit, dass die fragliche Person tatsächlich der Spurengeber ist, mit der Möglichkeit verglichen, dass die gefundene Uebereinstimmung zwischen Spur und Person ein blosser Zufall ist. Grundlage für diesen Vergleich bilden biostatistische und wahrscheinlichkeitstheoretische Prinzipien. Generell lässt sich sagen: je kleiner die Wahrscheinlichkeit einer zufälligen Uebereinstimmung, desto grösser ist der Beweiswert der Spur. Der Einsatz von DNA-Analysen als Beweismittel vor

67 vgl. Allgemeine Empfehlungen der Spurenkommission zur Bewertung von DNA-Mischspuren, publiziert auf http://www.rechtsmedizin.klinikum.uni-muenster.de/spurenkommission/Mischspuren-Biostatistik.PDF

68 Schmid, Strafprozessrecht, N. 286 ff.
Gericht verlangt eine statistische Aussage über den Beweiswert. In der gutachterlichen Formulierung des Befundes kann entweder die Uebereinstimmungswahrscheinlichkeit („match probability“) verwendet werden, oder aber - wie in der Schweiz gängige Praxis - der Likelihood-Quotient bestimmt werden.

7.4.1. Biostatistische Berechnungen

Aussagen zu der Häufigkeit der Merkmale eines Einzelindividuums (z.B. eines tatverdächtigen Spurenlegers) dürfen indes nur gemacht werden, wenn man gesicherte Kenntnisse über die tatsächliche Häufigkeit in der Grundgesamtheit, z.B. der ansässigen Bevölkerung, hat. Diese Werte werden durch Bevölkerungsstichproben ermittelt. Man kann berechnen, wieviele Individuen untersucht werden müssen, um solide Grundlagen zu bekommen, doch würde eine entsprechende Darstellung an dieser Stelle zu weit führen. D.h. aus der Bevölkerung wird eine bestimmte Anzahl Personen DNA-typisiert, und es werden die in dieser Bevölkerung gefundenen Allele gezählt. Daraus ergibt sich dann die Häufigkeit, mit der jedes einzelne Allel in der Bevölkerungsgruppe zu finden ist. Das Allel 16 des DNA-Systems VWA kommt z.B. bei ca. 20 % einer untersuchten Bevölkerung (d.h. bei ca. jedem 5.) vor, das Allel 20 hingegen nur bei ca. 1 % (d.h. bei ca. jedem 100.).

Die Häufigkeit der beobachteten Merkmalkombinationen berechnet sich unmittelbar aus den Allefrequenzen unter Voraussetzung des sog. Hardy-Weinberg-Gleichgewichtes: Für heterozygote Genotypen vom Typ AB (A und B sind die beiden unterschiedlichen Allele) gilt die Häufigkeit = 2ab, wobei a und b die Häufigkeiten der Allele A und B in der Bevölkerung sind. Für homozygote Genotypen vom Typ AA gilt Häufigkeit = a², wobei a wieder die Häufigkeit des Allels A in der Bevölkerung ist.

Für Person X bedeutet das, dass ihre Allelkombination VWA 16-20 eine Häufigkeit von 20 % x 1 % x 2 = 0.4 % (gerundet) aufweist. Ungefähr jede 250ste Person aus der Referenzbevölke-

69 vgl. Ziff. 7.4.6. hernach
rungsgruppe hätte denselben DNA-Typ. Bei der Person Y ergibt sich: Das Allel 18 hat eine Häufigkeit von ca. 25 %, daher ist die Häufigkeit ihrer Kombination VWA 18-18 25 % x 25 % = 6 % (gerundet). D.h. jede ca. 16te Person hätte denselben DNA-Typ wie sie.

Die Häufigkeiten der einzelnen Loci lassen sich multiplizieren, da sie unabhängigen Ereignissen entsprechen (Produkteregel). Je mehr unabhängige Loci untersucht werden, umso kleiner wird die Wahrscheinlichkeit einer zufälligen Übereinstimmung, d.h. immer weniger Menschen können dieselbe Kombination von DNA-Typen aufweisen.

Wie erwähnt, weisen eineiige Zwillinge identische DNA-Profile auf. Aber auch Geschwister haben mit einiger Wahrscheinlichkeit ähnliche Profile, so lange nur wenige Loci analysiert werden. Die Wahrscheinlichkeit, dass Allele unter Geschwistern identisch sind, beträgt für jeden Genort mindestens 25 %. Wenn vier Genorte untersucht werden, beträgt die Wahrscheinlichkeit, dass zwei Geschwister identische Profile aufweisen, mindestens 0.4 % (die Mindestwerte gelten für die häufigsten Situationen, bei denen beide Eltern heterozygotes Erbgut und keine gemeinsamen Allele haben)\(^70\).

7.4.2. Einfluss der ethnischen Abstammung eines Spurenlegers

\(^70\) vgl. DNA-Profilanalyse - der Hintergrund, publiziert auf http://www.ipn.uni-kiel.de/eibe/UNIT02DE.PDF

\(^71\) vgl. z.B. http://www.uni-duesseldorf.de/WWW/MedFak/Serology/
7.4.3. Der Trugschluss des Staatsanwaltes

Die Beweisführung mittels der DNA-Analyse lässt sich nicht allein über die Wahrscheinlichkeit führen. Tritt etwa ein DNA-Muster mit einer Häufigkeit von 1:10'000 auf, kann daraus gerade nicht geschlossen werden, dass die Person, deren genetischer Fingerabdruck mit dem am Tatort gefundenen übereinstimmt, nur mit einer Wahrscheinlichkeit von 1:10'000 unschuldig sei. Genau dies wäre der Fehlschluss des Staatsanwalts, der in die Geschichte der Justizirrtümer einging. So wurde die britische Anwältin Sally Clark wegen dieses Fehlschlusses irrtümlich wegen des Mordes an ihren zwei Kindern verurteilt, die beide am „Plötzlichen Kindstod“ gestorben waren. Ein Gutachter gab an, die Wahrscheinlichkeit, dass zwei Kinder nacheinander an diesem Phänomen stürben, sei 1:73 Millionen. Er verkannte, dass die beiden Todesfälle nicht als voneinander unabhängige Ereignisse betrachtet werden konnten. **Die Wahrscheinlichkeit, dass die DNA eines unschuldigen zufällig mit jener vom Tatort übereinstimmt, ist eine gänzlich andere als die Wahrscheinlichkeit, dass die Person unschuldig ist, deren DNA mit jener vom Tatort übereinstimmt:** Da die gefundene DNA mit einer Häufigkeit von 1:10'000 in der Bevölkerung vorkommt, besteht eben diese Wahrscheinlichkeit, dass eine unschuldige Person die DNA aufweist, die am Tatort gefunden wurde. Be- hauptet der Staatsanwalt jedoch, die Wahrscheinlichkeit, dass der Angeklagte unschuldig sei, betrage nur 1:10’000, begeht er den klassischen Fehlschluss. Ohne Annahme über den in Frage kommenden Täterkreis ist eine statistische Aussage gar nicht möglich. Bei einer unterstellten Gesamtzahl der in Frage kommenden 100‘000 Einwohner einer Gemeinde hingegen kommt die Spur 10 Mal vor, wobei nur ein Einwohner schuldig ist. Ohne weitere Anhaltspunkte sagt die übereinstimmende DNA jedoch: Die Wahrscheinlichkeit, dass der Angeklagte unschuldig ist, liegt bei 9/10 oder 90% (!)72. Richtig wäre daher die folgende Feststellung: Die Wahrscheinlichkeit, dass die DNA eines zufällig gewählten, unschuldigen Menschen mit der am Tatort gefundenen DNA-Spur übereinstimmt, beträgt 1:10'000. Für dieses Fallbeispiel gilt:

♦ Falsch: p (unschuldig | die gleiche DNA wie am Tatort)
♦ Richtig: p (die gleiche DNA wie am Tatort | unschuldig)

Die beiden Wahrscheinlichkeiten sind nicht identisch. Um sich davon zu überzeugen, vergleiche man die folgenden Wahrscheinlichkeiten: 1. die Wahrscheinlichkeit, dass jemand stirbt, falls sein Flugzeug abstürzt (vermutlich über 95 %): p (Tod | Flugzeugabsturz). 2. die Wahrscheinlichkeit, dass jemand in einem Flugzeug abgestürzt ist, wenn er gestorben ist (weniger als ein Bruchteil eines %): p (Flugzeugabsturz | Tod).

72 vgl. aber Ziff. 7.4.5. hernach

7.4.4. Der Trugschluss des Verteidigers

Der Verteidiger stellt fest, dass das Einzugsgebiet 100‘000 Einwohner hat. Man kann also 10 Leute mit derselben DNA wie am Tatort erwarten. Neun sind unschuldig, einer ist schuldig. Deshalb ist die Wahrscheinlichkeit, dass der Verhaftete unschuldig ist, 9/10 = 90 %. Das ist jedoch nur gültig, wenn alle 10 dieselbe Möglichkeit hätten, das Verbrechen zu begehen (das wäre in der Regel wenig wahrscheinlich für Personen unter 10 oder über 80 Jahren; vielleicht weiß man, ob das Verbrechen von einem Mann oder einer Frau begangen wurde, usw.).
7.4.5. Ein Beispiel zur Verdeutlichung

Eine Frau X (Anna) wurde vergewaltigt und erwürgt hinter einer Hecke aufgefunden. Der DNA-Test des Spermas, welches an der Leiche gefunden wurde, ergibt eine Übereinstimmung mit der DNA eines Mannes Y (Peter). Die Wahrscheinlichkeit für eine zufällige Übereinstimmung beträgt 1:1'000'000. Mit welcher Wahrscheinlichkeit ist Peter der Täter?

♦ 100 %?
♦ ca. 99 %?
♦ ca. 50 %?
♦ 0 %?
♦ alles ist möglich?

Alle Antworten sind richtig, wobei die Antwort „alles ist möglich“ „richtiger“ ist als die übrigen Antworten. Dem Szenario liegt eine Wahrscheinlichkeit von 1:1'000'000 zugrunde, dass die DNA-Profile zweier Personen als identisch angegeben werden.

Antwort 100 % ist zutreffend: Der Mord wurde auf einer einsamen Insel verübt, und darüber hinaus ist Peter der Nachbar von Anna. Er ist sogar wegen mehrerer Sexualdelikte vorbestraft. Während der Tatzeit befanden sich nachweislich nur zwei weitere Männer auf der Insel. Deren DNA passte nicht mit dem gefundenen Sperma überein.

Antwort ca. 99 % ist zutreffend: Der Mord geschah auf einer anderen Insel, auf der sich zur Tatzeit nachweislich 1'227 auf das Täterprofil (nicht zu verwechseln mit dem DNA-Profil [!]) passende Männer aufhielten. Davon wurden 227 getestet und die DNA von Peter hatte die einzige Übereinstimmung. Es gibt also noch 1'000 weitere potentielle Tatverdächtige. Die Wahrscheinlichkeit, dass einer von diesen dasselbe DNA-Profil wie Peter aufweist, liegt bei 1'000:1'000'000 = 0.001 bzw. 0.1 %.

Antwort ca. 50 % ist zutreffend: Der Mord fand in Neuseeland statt. Dort gibt es rund eine Million Tatverdächtige. Peter und Anna wohnten weder in derselben Stadt, noch kannten sie sich. Bei einer Million Menschen wird es im Durchschnitt ca. einen geben, der dasselbe DNA-Profil aufweist wie Peter. Neben ihm gibt es also noch einen Unbekannten, der die Tat begangen haben könnte.

Antwort 0 % ist richtig: Der Mord ereignete sich in einer Grossstadt. Die mit dem Sperma übereinstimmenden DNA-Daten von Peter stammen aus der DNA-Profil-Datenbank. In der Grossstadt leben ca. 1.3 Millionen Einwohner, wovon ca. 300'000 auf das Täterprofil (nicht zu verwechseln mit dem DNA-Profil [!]) passen. Die Wahrscheinlichkeit, dass wenigstens einer von diesen dasselbe DNA-Profil wie Peter aufweist, beträgt 300'000:1'000'000 = 0.3 bzw. 30 %. Es könnte also noch einen weiteren unbekannten Tatverdächtigen geben, der ein passendes DNA-Profil aufweist, auch wenn es nicht überaus wahrscheinlich ist. Nach Peter als Täter wurde gefahndet, doch war dieser zur Tatzeit bereits verstorben und beerdigt.
7.4.6. Likelihood Ratio (LR) bzw. Likelihood Quotient (LQ)73, 74

Bei der forensischen Spurenanalytik hat sich in den letzten Jahren anstelle der Übereinstimmungswahrscheinlichkeiten ein anderer biostatistischer Ansatz durchgesetzt - die Likelihood Ratio (LR) bzw. der Likelihood Quotient (LQ).

Aufgrund der vorstehend umschriebenen biostatistischen Berechnungen ergibt sich - beim unten dargestellten Beispiel - die Wahrscheinlichkeit einer zufälligen Übereinstimmung von z.B. 1:2 Milliarden (d.h. der gleiche Merkmalskomplex kommt unter 2 Milliarden Menschen nur einmal vor) oder von 0.00000005%.

<table>
<thead>
<tr>
<th>Untersuchte STR-Systeme</th>
<th>1. DNA-Profil der Geschädigten</th>
<th>2. Mischspur (Scheideninhalt)</th>
<th>3. DNA-Profil des Beschuldigten</th>
<th>4. DNA-Profil möglicher Spurenleger</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE33</td>
<td>17, 26.2</td>
<td>15, 17, 26.2, 29.2</td>
<td>15, 29.2</td>
<td>15, 29.2</td>
</tr>
<tr>
<td>VWA</td>
<td>16, 17</td>
<td>16, 17, 18</td>
<td>17, 18</td>
<td>18/16, 18/17, 18/18</td>
</tr>
<tr>
<td>TH01</td>
<td>7, 9.3</td>
<td>6, 7, 8, 9.3</td>
<td>6, 8</td>
<td>6, 8</td>
</tr>
<tr>
<td>FGA (FIBRA)</td>
<td>23, 24</td>
<td>20, 22, 23, 24</td>
<td>20, 22</td>
<td>20, 22</td>
</tr>
<tr>
<td>D3S1358</td>
<td>15, 16</td>
<td>15, 16</td>
<td>15, 16</td>
<td>15/15, 16/16, 16/16</td>
</tr>
<tr>
<td>D8S1179</td>
<td>12, 14</td>
<td>9, 12, 13, 14</td>
<td>9, 13</td>
<td>9, 13</td>
</tr>
<tr>
<td>D18S51</td>
<td>14, 15</td>
<td>14, 15, 17, 19</td>
<td>17, 19</td>
<td>17, 19</td>
</tr>
</tbody>
</table>

Abbildung 10: Ergebnis der DNA-Analyse einer Mischspur von Scheideninhalt und von Vergleichsproben

73 vgl. Beweiswert von DNA-Spuren, publiziert auf http://www.irm-bs.ch/files/Vademecum/Beweiswert_von_DNA.htm

74 Madea, Praxis Rechtsmedizin, S. 517 ff.
Bei einer Zwei-Personen-Mischspur (Scheideninhalt mit Allelkombination), in der sich alle beobachteten Allele durch die Merkmale der Geschädigten sowie des Beschuldigten erklären lassen, sind die Hypothesen wie folgt zu formulieren:

♦ **Hypothese HA** (Sichtweise der Anklage): Die Spur S stammt von der Geschädigten G und vom Beschuldigten B.

♦ **Hypothese HV** (Sichtweise der Verteidigung): Die Spur S stammt von der Geschädigten G und einer unbekannten und mit dem Beschuldigten nicht verwandten Person.

\[
LQ = \frac{P(S \mid \text{Genotyp } [B], \text{Genotyp } [G], \text{HA})}{P(S \mid \text{Genotyp } [G], \text{HV})}
\]

In dieser Formel beschreibt der Zähler die Wahrscheinlichkeit \(P \) für das Zustandekommen der Spur S unter der Annahme der Hypothese HA und der Nenner die Wahrscheinlichkeit \(P \) der gleichen Spur unter der Annahme der Hypothese HV. Der resultierende \(LQ \) gibt an, unter wie vielen gleich gelagerten Fällen sich das beobachtete DNA-Profil der Spur durch HA in Verhältnis zur Hypothese HV erklären lässt. Ist der Wert für den \(LQ > 1 \), so spricht dies für HA und ist der Wert < 1, so spricht dies eher für HV.

Im Falle des STR-Systems SE33 zeigt sich ein Spurenbefund mit vier Allelen (a, b, c, d) von denen zwei (b, c) bei der Geschädigten vorliegen. Unter der Hypothese, dass die Spur von zwei Personen verursacht wurde, muss der Spurenleger die beiden nicht zuordenbaren Allele a, d besitzen. Der Beschuldigte besitzt die beiden Allele und ist somit als Spurenverursacher nicht auszuschliessen. Für die Berechnung des \(LQ \) müssen Zähler und Nenner zunächst getrennt betrachtet werden. Auf der von HA lässt sich die Spur allein aus den Genotypen des Opfers und des Beschuldigten erklären, es gibt keine nicht zuordenbaren Allele. Folglich lautet die Formel

\[
P(S \mid \text{Genotyp } [G], \text{Genotyp } [B], \text{HA}) = 1
\]

Die Alternativhypothese fordert, dass nur eine Person mit den nicht zuordenbaren Allelen a, d als Spurenleger in Betracht kommt, also lautet die Formel (Nenner)

\[
P(S \mid \text{Genotyp } [G], \text{HV}) = 2ad
\]

entsprechend der erwarteten Genotypfrequenz nach dem Hardy-Weinberg-Gesetz. Daraus folgt für den \(LQ \) bei Berechnung mit den für SE33 angegebenen Allelfrequenzen\(^{75}\) (Allel 15: \(a = 0.037 \); Allel 29.2: \(d = 0.0604 \)):

\(^{75}\) vgl. http://www.uni-duesseldorf.de/WWW/MedFak/Serology/ (Germany)

Etwas komplizierter wird die Formel bei Auswertung des Systems D21S11, da hier die Spur nur drei Allele a, b, c aufweist. Sowohl die Geschädigte (b, c) als auch der Beschuldigte (a, b) sind gemischterbig und weisen gemeinsam das Allel b (= 29) auf. Somit kommen als mögliche Spurengeräte bei HV alle Personen in Betracht, die entweder das nicht bei der Geschädigten vorliegende Allel 28 reinerbig (= a, a) besitzen, oder 28 gemischterbig in Kombination entweder mit 29 (= a, b) oder mit 31.2 (= a, c). Entsprechend lautet die Formel im Nenner (Allelfrequenzen für D21S11: Allel 28: a = 0.1585, Allel 29: b = 0.2138, Allel 31.2: c = 0.0934)

\[P(S | \text{Genotyp } [G], \text{HV}) = a^2 + 2ab + 2ac \]

\[= 0.1585^2 + 2 \times 0.1585 \times 0.2138 + 2 \times 0.1585 \times 0.0934 = 0.1225 \]

Also rechnet sich der LQ wie folgt:

\[LQ = \frac{1}{0.1225} = 8.2 \]

Die Berechung des LQ setzt die Formulierung klarer Hypothesen voraus, bei denen die Zahl der möglichen Spurengeräte bzw. -verursacher festgelegt werden kann. Damit erlaubt sie die Angabe des Beweiswertes einer Spur in Bezug auf eine konkrete, verfahrensbeteiligte Person, z.B. einen beschuldigten Spurengeräte.

In Fällen, bei denen die Zahl der möglichen Spurengerätscher nicht bestimmt werden kann, z.B. wenn die Zahl der nachgewiesenen Allele je DNA-Locus größer als sechs ist, kann eine Berechnung der Ausschlusschance erfolgen. Dabei wird die Häufigkeit aller theoretisch möglichen Genotyp-Kombinationen eines Spurengerätscher auf der Basis aller in der Mischspur nachgewiesenen DNA-Merkmale durch Addition der Genotyp-Häufigkeiten berechnet und es wird angegeben, mit welcher Chance eine beliebige Person als Spurengeräte ausgeschlossen werden kann.

76 vgl. http://www.uni-duesseldorf.de/WWW/MedFak/Serology/ (Germany pooled)

8. Schlussbemerkung

Erklärung des Verfassers

Ich erkläre hiermit, dass ich die vorliegende Arbeit resp. die von mir ausgewiesene Leistung selbstständig, ohne Mithilfe Dritter und nur unter Ausnützung der angegebenen Quellen verfasst resp. erbracht habe.

Zürich, im April 2009

EBERLE Daniel